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Abstract. Accurate galaxy cluster mass estimates play a crucial role in refining cosmological parameters through count analyses.
Therefore, it is essential to identify reliable tracers that exhibit minimal intrinsic scatter and can be readily deduced from observations.
In this work, we explore the photometric information to create mass proxies using a simulated dataset. For this, we use AME,
an adaptive membership estimator that makes minimal assumptions about the galaxy cluster’s properties. With the membership
assignments, we derive richness, total stellar mass, and optical luminosity. Our sample is composed of 919 galaxy clusters within
the redshift range of 0.05 < z < 0.45, and masses ranging from 12.8 < log10(M/M⊙) < 15. Richness estimates present an offset
from the mock known values of −0.01 ± 0.12. The scaling relations show a scatter of σlog10(M|λ) = 0.181 ± 0.009 dex for richness,
σlog10(M|M⋆

λ
) = 0.097 ± 0.005 dex for stellar mass, and σlog10(M|Lλ) = 0.151 ± 0.007 dex for optical luminosity. We also discuss the

impact of small displacements in the cluster center and redshift. We conclude that our algorithm provides competitive cluster mass
proxies with low scatter for photometric surveys.

Resumo. Estimativas precisas de massa de aglomerados de galáxias desempenham um papel crucial na melhoria dos parâmetros
cosmológicos por meio de análises de contagem. Portanto, é essencial identificar traçadores confiáveis que apresentem dispersão
intrínseca mínima e possam ser facilmente deduzidos a partir de observações. Neste trabalho, exploramos as informações fo-
tométricas para criar estimadores de massa usando um conjunto de dados simulado. Para isso, utilizamos o AME, um estimador
de probabilidades de pertencimento das galáxias que faz suposições mínimas sobre as propriedades do aglomerado de galáxias.
Com as atribuições de probabilidades, obtemos riqueza, massa estelar total e luminosidade óptica. Nossa amostra é composta por
919 aglomerados de galáxias dentro da faixa de redshift de 0.05 < z < 0.45, e massas variando de 12.8 < log10(M/M⊙) < 15.
As estimativas de riqueza apresentam um deslocamento dos valores simulados conhecidos de −0.01 ± 0.12. As relações de escala
mostram uma dispersão de σlog10(M|λ) = 0.181 ± 0.009 dex para riqueza, σlog10(M|M⋆

λ
) = 0.097 ± 0.005 dex para massa estelar, e

σlog10(M|Lλ) = 0.151±0.007 dex para luminosidade óptica. Também discutimos o impacto de pequenos deslocamentos de centralização
e redshift dos aglomerados. Concluímos que nosso algoritmo fornece estimadores de massa competitivos e de baixa dispersão para
levantamentos fotométricos.
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1. Introduction

Cosmological surveys like KiDS (de Jong et al. 2013), DES
(The Dark Energy Survey Collaboration 2005), WISE (Wright
et al. 2010), and others, provide vast datasets with billions of
galaxies. Analyzing these data enhances our understanding of
the Universe’s large-scale structure and evolution. Galaxy clus-
ters, as tracers of overdensity peaks in matter distribution, of-
fer a sensitive indicator of cosmic density and clustering evolu-
tion. Consequently, they serve as powerful tools for constrain-
ing cosmological parameters (e.g. Reiprich & Böhringer 2002;
Vikhlinin et al. 2009; Pacaud et al. 2016; Ider Chitham et al.
2020; Finoguenov et al. 2020). However, this approach relies
on precise mass estimates for the detected systems. As direct
observation cannot provide these estimates, we must depend on
observable proxies for halo masses.

An ideal mass proxy should show limited dependence on the
cluster’s dynamical state, exhibit minimal intrinsic scatter, and
be easily accessed.

In recent decades, researchers have explored various inde-
pendent mass proxies to minimize uncertainties and system-
atic effects. Statistical uncertainties can be reduced to approx-
imately 0.2-0.3 dex for parameters such as cluster optical rich-
ness (Lopes et al. 2009), temperature, X-ray luminosity (Sereno
et al. 2019), stellar mass (Pereira et al. 2018), and Sunyaev-
Zel’dovich effect signal (Pratt & Bregman 2020). However,
statistics for low-mass systems such as galaxy groups remain
limited and need further investigation.

Imaging surveys utilizing narrow-band filters hold particular
significance in the galaxy cluster studies. These surveys serve as
an intermediary between broad-band imaging and spectroscopic
surveys, offering enhanced precision and accuracy for the galax-
ies’ photometric redshifts (photo-z’s). Notable examples include
J-PAS (Benitez et al. 2014), S-PLUS (Mendes de Oliveira et
al. 2019), and J-PLUS (Cenarro et al. 2019). Regarding group
and cluster detections, this transition also affects cluster finder
algorithms. Methodologies are evolving from color-based ap-
proaches to those capable of leveraging increased photometric
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information, as seen in the performance and algorithm selection
discussed in Euclid Collaboration et al. (2019).

Hence, it is necessary to reassess membership estimation
strategies and techniques to derive mass proxies with minimal
scatter utilizing photometric data. However, a challenge in deal-
ing with photo-z is the scale of the redshift uncertainties. A typ-
ical error of 0.01 in photo-zs translates to 3000 km/s, surpassing
the typical virialized cluster velocity dispersion estimated with
spectroscopic redshifts by 3-6 times. This discrepancy results in
contamination by line-of-sight galaxies and may generate false
cluster detections by connecting unrelated structures (Weinberg
et al. 2013).

This issue of galaxy membership for groups and clusters has
been engaged in recent studies by Castignani & Benoist (2016);
Bellagamba et al. (2019); Lopes & Ribeiro (2020). The authors
discuss the use of a continuous probabilistic membership, as op-
posed to binomial ones, which can provide a better description
of the data. Thus, this approach enables the establishment of var-
ious galaxy-based mass proxies, which are determined by as-
signing weights to galaxy properties based on their membership
probabilities, such as luminosity, stellar masses, or other relevant
factors.

Inspired by the emergence of ongoing and upcoming wide
photometric surveys, we conduct an analysis of the distributions
of galaxy groups/clusters down to log10(M) > 12.8 M⊙ based
on a sky simulation of the Southern Photometric Local Universe
Survey (S-PLUS, Mendes de Oliveira et al. 2019) up to red-
shift z = 0.45. Employing AME, an adaptive membership algo-
rithm (Doubrawa et al. 2023), we explore mass proxies such as
richness, optical luminosity, and stellar mass derived from these
memberships. The significance of richness is discussed by com-
paring it with the expected value from the simulation. We present
scaling relations obtained with the mass proxies, discuss intrin-
sic scatter, and introduce small offsets to simulate real-case dis-
placements in cluster detection, evaluating their impact on our
results. This work relies on the results presented in Doubrawa et
al. (2023).

2. Data

To assess the effectiveness of our estimator, we employ a simu-
lated sky lightcone catalog created by Araya-Araya et al. (2021);
Werner et al. (2022), designed to mimic the characteristics of the
S-PLUS survey (Mendes de Oliveira et al. 2019), particularly the
features of its initial data release. S-PLUS is a photometric sur-
vey of the Southern Sky utilizing 12 optical bands (5 broad and
7 narrow) from a 0.8m telescope situated at Chile/CTIO.

This simulated catalog covers an area of 324 square degrees
and is generated using synthetic galaxies based on the analyt-
ical model (SAM) by Henriques et al. (2015). The algorithm
employs the Millennium simulation (Springel et al. 2005) as a
foundation, scaling the equivalent matter density field according
to the Planck Collaboration et al. (2014) cosmological frame-
work. The simulation uses a mass resolution of mp = 9.6 × 108

M⊙/h, with only those halos having a corresponding stellar mass
greater than 108 M⊙/h being considered.

We select all dominant dark matter halos with Mc,200 ≥ 1012.8

M⊙. To ensure robust statistical significance, only halos with at
least 3 associated galaxies are considered. The associated galaxy
members, hereafter referred to as “true members”, are identified
through the merger history of the system. Galaxies residing in
a dark matter halo and evolving into a chosen cluster receive
a cluster identification ID, labeled as "haloId." This ID enables
easy identification of all galaxies belonging to a specific cluster.

The median value of the distribution of member galaxies gives
the halos sky positions.

Restricting the catalog to z < 0.45, we identify 238 groups
with masses ranging from 1012.8 to 1013.5 M⊙, 358 clusters with
masses between 1013.5 and 1014 M⊙, 249 with masses from 1014

to 1014.5 M⊙, and 76 massive clusters with M > 1014.5 M⊙.
To obtain the photometric redshifts, the true values are

shifted by a random number from a normal distribution. Here,
the standard deviation σMAD,z represents the normalized me-
dian absolute deviation, calculated from the comparison between
spectroscopic and photometric redshifts for galaxies with a spe-
cific magnitude r. The deviations are derived from Molino et al.
(2020) for the DR1/S-PLUS survey.

A comparable method is employed to generate the photo-
z probability density function (PDF) for each galaxy. However,
in these cases, the normal distribution is centered on the gen-
erated photometric redshift. This technique takes into account
the correlation between the photometric errors and the galaxy’s
magnitudes.

3. Methods

In this section, we outline the key steps of the adaptive mem-
bership estimator (AME, Doubrawa et al. 2023). The algorithm
utilizes galaxy catalog projected positions, photo-z probability
density functions (PDFs), and cluster coordinates in 2+1D space
(zcl, RAcl, and Deccl) as inputs. To replicate the obtained values
in the S-PLUS survey, we describe the photo-z PDFs as Gaussian
distributions centered on the photometric redshift.

1. Remove Non-Members: Exclude galaxies beyond a 2.5
Mpc radius, and with |zphot,i − zcl| > 3σMAD,z(1 + zcl).

2. Density Profile Calculation: Compute the galaxy density
profile, defining a core radius (Rc) as the break or “knee” in
this profile.

3. Random Redshift Assignment: Assign a redshift value
based on the photo-z PDF for each galaxy within Rc.

4. Cluster Velocity Dispersion: Estimate the cluster velocity
dispersion using the random redshifts. Apply a 3σ clipping
process to remove possible contamination.

5. HDBSCAN Clustering: Apply HDBSCAN (Campello et al.
2014) to the remaining galaxies. If more than one clustering
is detected, consider the primary counterpart the one with the
most galaxies.

6. Iterative Process: Repeat steps 3-5 N times. The member-
ship probability for each galaxy is calculated as the ratio of
the number of times the galaxy is identified as a member
by HDBSCAN to the total number of repetitions: Pmem =
Nmem/N.

In step (i), our goal is to prevent the exclusion of galaxies
with reasonable chances of being gravitationally bound mem-
bers from the potential member pool while also minimizing
computational costs.

For step (ii), we define a projected aperture, denoted as Rc,
based on the radial distribution of galaxies. This profile is com-
puted within an annulus, progressing from the center outward.
Overlapping steps of 10 kpc are used, with a log-scaling width
ranging from 50–200 kpc. In estimating areas, we rigorously
account for survey boundaries using the Monte Carlo method,
which proves effective in handling potential masked survey ar-
eas.

This step is characterized by the identification of a discon-
tinuity in the density gradient, typically occurring during the
transition from a cluster-dominated to a field-dominated region.
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The abrupt density drop, or “break”, often represents a factor
of 2 within the chosen steps (in a log10 scale). To pinpoint this
break, we employ the Kneedle algorithm (Satopaa et al. 2011).
In essence, the algorithm identifies a local minimum by assess-
ing the difference between the density profile and a straight line
connecting its initial and final points. The first detected local
minimum, is designated as Rc. Galaxies beyond this radius are
excluded.

Systematic tests involving different binning and steps were
conducted. While larger steps may introduce a positive offset of
30 to 60 kpc across the entire range of radii, refining the binning
scheme doesn’t significantly bias the results.

In steps (iii) and (iv), we depart from using a point estimation
for redshift and instead utilize the entire photo-z PDF. We can
reproduce the realization of a redshift measurement by drawing a
random value based on the PDF for each galaxy in the remaining
sample.

Even after the clippings, some sample contamination is ex-
pected. Tests with true member galaxies alone yielded a similar
velocity dispersion value, indicating that an interactive approach
relating a mock quantity (e.g., richness) to expected velocity dis-
persion wouldn’t significantly improve results. A more stringent
cut (1σ) might address this issue for well-behaved PDFs where
the limit is smaller than the redshift uncertainty. However, for a
more realistic distribution, this approach risks eliminating valu-
able information. Despite these challenges, applying a 3σ clip-
ping can still provide precise results, as presented below.

Finally, in step (v), we apply the Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN) al-
gorithm, which connects points based on proximity and identi-
fies more isolated ones as interlopers.

The membership probability is determined by running the
described procedure 100 times (N = 100) and calculating the
probability for each galaxy based on the number of times it is se-
lected by HDBSCAN over the total trials. This iterative approach
leverages multiple redshift realizations from the photo-z’s PDFs,
maximizing its utilization.

4. Results

4.1. Quantifying the richness accuracy

The primary objective of this study is to establish a methodology
capable of generating an optical mass proxy based on photo-
metric information with minimal scatter. Furthermore, our aim
is to develop a method applicable across diverse cluster cata-
logs, spanning from groups to galaxy clusters, without relying
on robust modeling assumptions. In utilizing optical richness as
a proxy for scaling relations, precision in quantifying richness is
essential.

As we have access to the true richness of the sample, we
compare the average values provided by the mock with the rich-
ness calculated by AME (λAME). True richness (λTrue) is defined
as the number of galaxies identified as members by the simu-
lations within Rc from the cluster center. Figure 1 illustrates the
agreement between both quantities, with a black dotted line in-
dicating the one-to-one line. Each bin includes a minimum of
10 clusters and/or groups. The residual value between λTrue and
λAME is a low and unbiased −0.011±0.119, affirming the quality
of our richness estimate.

4.2. Mass proxies scaling relations

The primary challenge in utilizing galaxy clusters for cosmolog-
ical studies lies in measuring their individual masses. A common
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Figure 1. Comparison of richness calculated with the adaptive
membership estimator (λAME) and the true richness provided by
the mock (λTrue). Each bin of true richness includes a minimum
of 10 clusters. The black dotted line represents the one-to-one
relation.

approach is to establish correlations between mass and other ob-
servable properties, such as optical richness, X-ray luminosity,
or total stellar mass. Typically, these relationships are calibrated
using a limited sample of objects and then extrapolated to the
entire catalog. Lensing surveys, for instance, consider the entire
sample in stacked analyses. An effective mass proxy should ex-
hibit minimal intrinsic scatter to yield reliable mass estimates.

As AME provides the probability of each galaxy being grav-
itationally bound to a specific cluster, we can leverage this ca-
pability to characterize the cluster sample by computing vari-
ous properties, weighted by membership probabilities. For in-
stance, using magnitude information in the r-band, we can es-
timate the structure total optical luminosity by summing up the
contribution of each galaxy luminosity multiplied by its mem-
bership, such as Lλ =

∑
Li Pi =

∑
100.4[4.42−Mi] Pi. Here, the so-

lar absolute magnitude in the r-band is denoted by 4.65 (S DS S r,
Willmer 2018), and Mi represents the absolute magnitude of the
i-th galaxy in the same band. Similarly, the stellar mass of mock
galaxies can be utilized to derive the structure’s total stellar mass
by employing a comparable procedure: M⋆λ =

∑
M⋆i Pi, with M⋆i

as the stellar mass of the i-th galaxy.
To derive the mock quantities we apply the same concept,

where Pi is one for a true member galaxy and zero otherwise.
Utilizing our mass proxies, we can establish scaling rela-

tions. To understand and calculate the intrinsic scatter, we per-
form a linear regression using the linmix algorithm (Kelly 2007).
This code employs a Bayesian approach and considers errors in
both parameters, namely masses and proxies, which is particu-
larly suitable for real data. We model the relation as,

log10

(
M200

M⊙

)
= α + β log10

(
O

Opiv

)
± ϵ (1)

Here, α and β denote the coefficients, O and Opiv stands
for the mass proxy and the pivot value equivalent to its mean,
and ϵ represents the intrinsic scatter around the regression. The
best-fitting parameters resulting from this analysis are detailed
in Table,1, where mock values are indicated by “true”.

Results are also presented in the Figure 2. The top, middle,
and bottom panels illustrate the relationships between Mass and
λ, Mass and Lλ, and Mass and M⋆λ , respectively. In the figure,
black diamonds represent mock results, while red circles repre-
sent the estimator outcomes.
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Table 1. Best-fitting values from linear regression. Equation,1
describes the mass-observable relation, where Opiv is consis-
tently associated with the mock proxy. Optical luminosity (Lλ)
and total stellar mass (M⋆λ ) are presented in units of L⊙ and M⊙
respectively.

Proxy α β ϵ Opiv

λTrue 13.85 ± 0.02 1.32 ± 0.07 0.180 ± 0.009 5.4
λAME 13.86 ± 0.02 0.95 ± 0.10 0.181 ± 0.009 ”
Lλ,True 13.89 ± 0.01 0.94 ± 0.05 0.141 ± 0.007 6.7 × 1010

Lλ,AME 13.89 ± 0.01 0.95 ± 0.05 0.151 ± 0.007 ”
M⋆λ,True 13.92 ± 0.01 1.12 ± 0.04 0.092 ± 0.005 2.4 × 1011

M⋆λ,AME 13.99 ± 0.01 1.12 ± 0.03 0.097 ± 0.005 ”

Table,1 highlights that the mass-richness relation exhibits the
highest scatter. This is not a surprising conclusion as the mock
results at the low-mass end emphasize the significant intrinsic
scatter for small richness groups. For instance, a structure with
log10(λ) = 0.6 (λ = 4) can present a halo mass ranging from
1013.2 to 1014.2 M⊙. Despite differences at the high richness end,
which indicates some contamination for high mass clusters, the
mock and AME linear regressions exhibit consistent behavior.
We find an intrinsic scatter of σlog10(M|λ) = 0.181± 0.009 dex,
a value comparable to the one observed in simulations.

Lλ has proven to be a valuable parameter, exhibiting a scatter
of σlog10(M|Lλ) = 0.151 dex, compared to the simulated value of
0.141 dex. Notably, the observed residual scatter between the
mock and AME results is consistent with σlog10(λTrue |λAME ) which
is 0.014.

When considering the amplitude of the mass range, we ob-
serve similar behavior for Lλ. However, a slight deviation is no-
ticeable for lower luminous structures, possibly due to external
contamination. This difference leads to a minimal increase in in-
trinsic scatter compared to the simulation.

M⋆λ emerges as a compelling choice with the least intrinsic
scatter, offering a robust characterization of galaxy cluster candi-
dates in terms of physical properties like stellar mass. However,
these results could be somewhat optimistic as they rely on the
precise values obtained from analytical models. In optical sur-
veys, the inference method could introduce scattering or uncer-
tainties. Similar to the pattern observed in Lλ at the low end, we
note a minor difference in β, introducing a gap of approximately
∼ 0.01.

4.3. Impact of center and redshift variations

To assess the robustness of the code, we introduce slight vari-
ations in redshift and center coordinates within the mock clus-
ter catalog. These variations emulate the subtle disturbances en-
countered in the detection of galaxy clusters using observational
data.

In their work, Werner et al. (2022) explore the utilization of
the density-based algorithm PZWav (Gonzalez 2014) to identify
clusters from S-PLUS DR1. They evaluate the algorithm’s per-
formance by comparisons with the detection outputs obtained
with the same simulated catalog described in our study. Given
PZWav’s methodology, which detects structures based on the
galaxies’ spatial distribution and estimates redshifts considering
the surrounding galaxies, observed variations in center and red-
shifts are small. The average radii offset is 10 kpc, with a scat-
ter of 12 kpc, while for redshifts this difference is as small as
0.6 × 10−3 with σ = 8.8 × 10−3.

To examine these variations, we consider three different sce-
narios involving the mean values added to the 1σ, 2σ, and 3σ in-
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Figure 2. Scaling relations between mass and optical proxies.
Median values in proxy bins are highlighted for both the adap-
tive membership estimator (red dots) and mock values (black
diamonds), along with the corresponding linear regressions (or-
ange and grey lines). Coefficient values can be found in Table,1.

tervals. Subsequently, we compare the richness results obtained
under these offsets with the centralized ones. The ∆R variations
are described as 2D Gaussian distributions, similar to previous
studies on miscentering (e.g., Johnston et al. 2007). Importantly,
this displacement is not applied over a preferential frame; in-
stead, we randomly draw an orientation value between 0 and
360 degrees.

For ∆z, this offset is employed as a normal distribution cen-
tered on ∆z with corresponding σNorm values of 1, 2, or 3σ, ran-
domly adding or subtracting from the cluster redshift.
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Table 2. The median relative error between richness calculated
under ∆R and ∆z offsets and the centralized ones. These offsets
include a mean value added to 1σ, 2σ and 3σ intervals.

∆R [kpc] ∆z
Ō + 1σ 0 ± 0.010 −0.02 ± 0.05
Ō + 2σ 0 ± 0.011 −0.08 ± 0.10
Ō + 3σ 0 ± 0.013 −0.18 ± 0.18

Table 2 summarizes our findings. The table includes median
relative errors and σMAD for richness results under variations in
∆R and ∆z. As there were no significant trends observed across
the redshift range, we consolidated the results for all galaxy clus-
ters within each scenario.

For small offsets in center distance, the richness results ex-
hibit no significant deviation, as indicated by median relative
errors consistent with zero. This analysis underscores the ro-
bustness of the code against center variations within this range.
Upon further investigation, we find that the median relative error
remains below −2% even up to ∆R > 250 kpc. However, it in-
creases to −35% for ∆R > 500 kpc and −50% for ∆R > 750 kpc.
Here, the negative sign denotes an underestimation of richness.
These observations suggest that the code is sensitive to varia-
tions in galaxy density at the outskirts of the cluster compared to
the central distribution, particularly influenced by the choice of
the field galaxies as contamination points.

In the context of redshift variations, we notice a reduction in
the richness measurements within the range of error bars. The
deviation ranges from −8% for a 2σ offset to −18% for a 3σ
offset. This considerable difference, comparable to the photo-z
uncertainty, implies the exclusion of a significant contribution
from PDFs of galaxies near the cluster center. It’s noteworthy
that despite these variations, the code demonstrates robustness
against expected offsets in both center and redshift.

5. Conclusions

We introduced AME, an adaptive membership estimator
(Doubrawa et al. 2023), utilizing photometric redshifts, which
provided robust estimates for richness, optical luminosity, and
total stellar mass across a dataset of 919 simulated structures.
This method minimizes reliance on specific cluster definitions,
utilizing only the sky position within a characteristic radius (Rc)
to identify potential galaxy members.

Analyses using the true galaxy members, as defined by the
simulation, revealed that comparisons between median values of
richness estimates with λmock and λAME produce a linear rela-
tion. The residual value obtained from the individual differences
produces a value of −0.01 ± 0.12.

Relying on the membership probabilities, we derive opti-
cal mass proxies by weighting galaxy properties according to
their memberships. Employing linear regression in the scaling
relations between mass and observables, we achieve competitive
intrinsic scatter compared to the literature. Specifically, we ob-
serve σlog10(M|λ) = 0.181 ± 0.009 dex for richness, σlog10(M|Lλ) =
0.151± 0.007 dex for total optical luminosity, and σlog10(M|M⋆λ ) =
0.097 ± 0.005 dex for stellar mass.

We demonstrate the robustness of our adaptive estimator
against small center and redshift variations as expected in de-
tection catalogs produced by cluster finders. In the face of these
variations, the errors remain below 1%.
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