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Abstract. Parameter inference is one of the central topics of Cosmology, and the cosmological covariance matrices are fundamental
for this task. Estimating accurate and precise covariance matrices requires lots of data – either observations or simulations, both
of which may be very costly. In this work we propose a machine learning approach that starts from matrices which are built with
only a small amount of data (as little as 50 power spectra), but is able to provide significantly improved covariance matrices, which
are almost indistinguishable from the ones built from much larger samples (thousands of spectra). The methodology consists in
training convolutional neural networks to denoise the covariance matrices using in the training process a data set made up entirely of
spectra extracted from simple, inexpensive halo simulations (mocks). In order to validate the process we have compared the denoised
matrices with covariance matrices built with thousands of spectra. We have used several different metrics to compare the matrices,
and in particular we measured the ability of the denoised covariance matrices to recover the cosmological parameters. The denoised
matrices scored significantly better in all the analyses, being comparable to the validation matrices (built from thousands of spectra).

Resumo. Um dos principais tópicos de estudos da Cosmologia reside na inferência de parâmetros comológicos e as matrizes de
covariância são uma peça fundamental para sua obtenção. Matrizes de covariância precisas e acuradas são obtidas com o uso de uma
enorme quantidade de dados (inúmeras observações ou custosas simulações), o que nem sempre é uma opção viável. Neste trabalho
nós propomos o uso de um método de aprendizado de máquina capaz de transformar matrizes construídas com apenas uma pequena
quantidade de dados (centenas de espectros) em matrizes significativamente melhoradas, quase indistinguíveis de matrizes feitas
com amostras muito maiores (milhares de espectros). A metodologia consiste em treinar redes neurais convolucionais para remover
o ruído de matrizes de covariância usando no treinamento um conjunto de dados de matrizes construídas totalmente com espectros
de potência obtidos por meio de um gerador de catálogos de halos simples e barato. Para validar esse processo nós comparamos
as matrizes de covariância sem ruído obtidas com matrizes feitas com um grande número de espectros. Foram utilizadas várias e
diferentes métricas para medir a habilidade do método de recuperar os parêmetros cosmológicos. Por fim, as matrizes sem ruído
obtidas apresentaram resultados significativamente melhorados, em todas as análises, comparadas as matrizes de validação.
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1. Introduction

Parameter inference reside in one of the most important end
products of cosmological data analysis. The cosmological co-
variance matrices appears in this context, connecting theory and
data by quantify the amount for which we expect the measure-
ments of some summary statistic to fluctuate, given the underly-
ing physical phenomena and observational conditions (e.g., sur-
vey masks).

Analytical approaches can provide a good first approxima-
tion for the covariance matrix, however, both the physical mod-
els and the observational conditions are often best represented
in terms of simulations. Then, the matrices are computed as the
sample covariance, given a set of independent simulations and
their summary statistic. In order to get these matrices both pre-
cise and accurate (Hartlap, Simon & Schneider 2007) to not bias
the parameter estimation (Taylor, Joachimi & Kitching 2013)
we need large samples, which require significant computational
times, a task which is not always possible (Heavens et al. 2017).

In the case of the power spectrum the sample size that is
typically required to fulfill those needs is around Ns ∼ n2

k , where
nk is the number of k bins (bandpowers). This number can grow
even more with different tracers and all the resulting auto- and
cross-spectra. Thus, it is of paramount importance to optimize
methods that can estimate efficiently these matrices.

Several efforts have already been made with the goal of ob-
taining precise matrices using smaller samples (Taylor, Joachimi
& Kitching 2013; Schneider et al. 2011). Other option is the use

Figure 1. Slice of the mask of random ellipsoids. The inset shows
a zoom in on three ellipsoids, for a better visualization.

of approximate numerical methods (instead of using the expen-
sive N-body simulations) as PINOCCHIO (Monaco et al. 2013),
Lognormal (Agrawal et al. 2017), and ExSHalos (Voivodic,
Lima & Abramo 2019). From a different perspective, machine
learning (ML) techniques offer alternative solutions to some of
these challenges. There are works trying to speed-up the pro-
cess of producing high-resolution N-body simulations, by start-
ing from lower-resolution ones and others where they try to em-
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ulate the full non-linear evolution of N-body simulations by in-
putting only approximate simulations of these (Li et al. 2021;
Alves de Oliveira et al. 2020).

In the present paper we propose a new approach, that em-
ploys convolutional neural networks (CNN), more specifically
image denoising techniques, as a tool to enhance sample cos-
mological covariance matrices. We show that the final covari-
ance matrices (after denoising) become as precise and accurate
as the ones obtained with a much higher number of simulations.
This work is organized as follows: in section 2 comprehends the
methodology; in section 3 we present the main results of this
work; and, in section 4, we discuss the implications of our re-
sults and explain future applications.

2. Dataset and methodology

2.1. The halo catalogs

Excursion Set Halos (ExSHalos) is a new, fast, and parameter-
free method to generate dark matter halo catalogs (Voivodic,
Lima & Abramo 2019). The code implements the notion of ex-
cursion sets (Bond et al. 1991), and then it corrects the positions
of the halo using Lagrangian Perturbation Theory (LPT) (Vlah,
Seljak & Baldauf 2015). The required inputs are the cosmol-
ogy, the linear matter power spectrum, and the threshold density
for halo formation in linear theory (constant or ellipsoidal col-
lapse barriers). For the ExSHalos mocks we used a linear power
spectrum from the Code for Anisotropies in the Microwave
Background (CAMB) (?). We have chosen the constant barrier
and used LPT to second order. The cosmology was chosen ac-
cording to Planck (Planck Collaboration 2020): Ωm = 0.3175,
Ωb = 0.049, h = 0.6711, ns = 0.9624, σ8 = 0.834, Mν = 0.0eV
and ω = −1. The size of the box was L = 1000 Mpc/h and
we used cubic cells of 1 Mpc/h at a fixed redshift z = 0.
In total, we have produced 30,000 mock catalogs (hereafter,
Nmax = 30, 000), but it should be noticed that not all the ML
models used in this work needed this whole amount.

2.2. The power spectrum

We chose as tracers the halos with masses between M ∈

[1013.12, 1013.37]M�/h, i.e., with a mean mass 〈M〉 =
1013.25M�/h and the power spectrum as our summary statistic.
In this way, for each simulation, the data vector corresponds to a
set of P(k), and that is what we use to build the covariance ma-
trices. To mimic real-life effects we have masked the halo maps
in a way that attempts at emulating a mask covering some re-
gions of the sky: to reflect a survey’s footprint as well as bright
stars, cloudy nights, regions with poor seeing, etc (Coupon et al.
2018). Apart from that, here, the mask induce non-trivial corre-
lations between different spectral modes.

We built the mask using randomly placed ellipsoids with ran-
dom sizes and orientations, in such a way that regions outside
those ellipsoids were masked out. The mask occupies approx-
imately ∼ 50% of the total box volume, and we estimated the
spectrum on a grid of the entire box, with cells of 4 h−1 Mpc on
a side. In Figure 1 we show a slice of the mask.

We computed the spectra of both the masked and unmasked
catalogs, which are shown (in terms of the mean for 100 maps)
in figure 2. The effect of the mask can be seen from this plot, in
terms of a suppression of the clustering amplitude on all but the
smallest scales. Notice that we have considered the halo bias b
for this halo mass bin (according to Tinker’s definition (Tinker et
al. 2010)), which was computed for 100 ExSHalos catalogs, and
averaged over scales in the range k ∈ [0.015, 0.2625] h Mpc−1.

Figure 2. Power spectra of the masked (dotted) and unmasked
(solid) halos. The linear matter power spectrum is also shown as
the solid black line for comparison.

Then, the computed value is: 1.25 ± 0.04. We should stress that
we treat the bias as a nuisance parameter in the cosmological
parameter inference.

2.3. The data set of the covariance matrices

The cosmological covariance matrices were computed as:

Cov(N)[P(ki), P(k j)] =
1

(N − 1)

N∑
l=1

[
P(ki)l − P̄(ki)

] [
P(k j)l − P̄(k j)

]
, (1)

where N is the number of spectra in the data vector (the sample
size), P(ki)l is the value of the lth spectra for the ith bin, and
P̄(ki) is the mean power spectrum.

We have used sets of samples of different sizes to train our
ML denoiser. First, we constructed the input covariance matri-
ces, which correspond to small sample sizes (n spectra), the ones
we would like to enhance with our denoiser - n ∈ [50, 250], in
increments of ∆n = 25. Second, we computed covariance ma-
trices with larger sample sizes (N spectra, the target matrices,
using N = 1000). Third, we compare the cleaned version of the
input matrices with the best possible covariance matrix, which is
computed using the maximum sample size (Nmax spectra).

We stress that we do not use this total number of spectra to
train the ML suites: in each training we used 120 input matrices
and 120 target matrices. E.g., in the cases of n = {50, 100, 200}
input spectra we used {6000, 12, 000, 24, 000} spectra for the en-
tire training process. The main limitation of our model was the
computational cost associated with running the ExSHalos simu-
lations.

2.4. The ML suite

The ML method that we have used in this work is an image de-
noising. In this problem, a noisy image y can be decomposed in
an unknown image signal x, and the noise ν. The goal of the de-
noiser is to produce a cleaned version of the image, x̂, by reduc-
ing the noise while keeping its original properties and features
while not creating new artifacts in the process (Tian et al. 2019).

The state-of-art of these methods are given by CNNs, or
auto-encoders, mainly because they are purely data driven, with
no assumption about the nature of the noise (Tian et al. 2019;
Chollet 2017). They took a pair of images: a noisy image y (in-
put) and a clear image x (target). Then, they learn to recognize
what is signal, what is noise, and how to remove that noise, pre-
dicting images which are closer (less noisy) to the ones used as
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Figure 3. Comparison of the (normalized) cosmological covari-
ance matrices. On the top left we have the input matrices with
n = 50 spectra; on the top right, the target matrices, with
N = 1000 spectra; on the bottom left we have the denoised ma-
trix, corresponding to the model of: (n = 50,N = 1000); and on
the bottom right, the best matrix, with Nmax spectra. In each one
of these figures, the axes corresponds to values of k, representing
the 42 Fourier bins of the power spectrum.

target – i.e., as close as possible to the ground truth images x. In
the context of covariance matrices the noisy images are the input
matrices (built with samples of n spectra) and the target images
are the matrices built with samples of N spectra.

A basic auto-encoder has two parts: an encoder, followed by
a decoder, i.e., a sequence of convolutional layers that are re-
sponsible for extracting the features from the images, capturing
the abstraction of their content, and then recovering the features
at the end of the process. This is performed minimizing a loss
function (Vincent et al. 2008).

In this work, we used different ML models to deal with each
combination of input and target matrices with (n,N) spectra. The
size of the data set was composed with 120 matrices (240 in total,
because each input matrix had its respective target). The entire
method was implemented using the keras library (Chollet 2015).

In order to homogenize the entries of the covariance matri-
ces in the training stage, we normalized the matrices using the
diagonal of the matrix built with Nmax according to:

Cov(N)
i j →

Cov(N)
i j√

Cov(Nmax)
ii ,Cov(Nmax)

j j

. (2)

We plug back the normalization to recover the denoised covari-
ance matrices at the end of the process and we impose the sym-
metry of the covariance matrices, Covi j → (Covi j + Cov ji)/2.

3. Results

3.1. Visualizing the matrices

In figure 3 we have the visual inspection of the matrices, compar-
ing the normalized matrices (according to equation 2): denoised
(n = 50 ⇒ N = 1000) against the target (N = 1000) and the
best-case scenario (Nmax = 30, 000) spectra. It can be seen that
the denoised matrices appear almost identical as the best ones
(Nmax) and are visually smooth and noiseless.

Figure 4. Slices of the normalized covariances (according to
equation 2) for different fixed values of ki. The peaks correspond
to points along the diagonal. The plots show that the denoiser is
able to remove the noise (seen in the input matrices), without in-
troducing new features, so the denoised matrices match closely
the targets and the best matrix (with a sample of Nmax spectra).

Figure 5. MSE for the cosmological covariance matrices, com-
puted by comparing the best sample (Nmax = 30, 000) and the
original (input) matrices, in gray, and the denoised ones, in red.
As the sample size of the input matrices (n) grow, the agreement
between the matrices improve and the MSE becomes smaller.
The MSE between the best matrix and the target matrix (with
N = 1000 spectra) is shown as the black line. The error bars ac-
count for the epistemic error (i.e., values obtained for different
seeds of the same model). The lower panel shows the relative
difference according to equation 3.

A more accurate comparison of the matrices can be glimpsed
from comparing slices (rows/columns) of the normalized co-
variance matrices, in order to show both the diagonal and off-
diagonal elements (Blot et al. 2019). In figure 4 we show a few
fixed ki slices of these matrices as a function of k j, with the cor-
responding values for the input, denoised, target and best nor-
malized covariances. All the matrices follow the behavior of the
best-case scenario (Nmax), but it is clear that the input matrices
are severely affected with noise, especially in the off-diagonal
elements. However, after applying the ML denoiser those fluctu-
ations basically disappear, and the off-diagonal elements match
the behavior of the target and best matrices in all cases.

3.2. The MSE between different matrices

We have monitored the improvements in the covariance matrices
using the MSE metric:

MS E =
1
N

N∑
l=1

1
n2

k

nk∑
i, j=1

(Covl
i j −Cov(Nmax)

i j )2 , (3)

where Covl
i j are the input, target or denoised covariance matri-

ces, Cov(Nmax)
i j is the best matrix, nk the number of bins of k in
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Figure 6. Ranked eigenvalues (main plot) and their relative dif-
ference (subplot, with the respective values for the matrix with
Nmax) for the covariance matrices.

the data vector, andN is the total number of matrices used in the
evaluation. The results are shown in figure 5. The gray line corre-
sponds to the MSE for the original (input) matrices, the red line
corresponds to the denoised matrices, and the error bars account
for the standard deviation for the results for different random
seeds of the ML suite. As a comparison, the black line repre-
sents the MSE of the target matrices (N = 1000), which is a
lower bound for the MSE of the original matrices and provides
a sanity check. The lower panel in figure 5 shows the residue
between the [input, denoised] and best matrices. Naturally, the
MSE decreases when the sample size (n) grows. The decrease in
MSE that results from applying the denoiser is much larger: the
mean values of the residue (〈RD〉) show that the denoised matri-
ces deviate by only ∼ 0.4 from the best matrices, compared with
approximately 7.0 for the original input matrices.

3.3. The eigenvalues of the matrices

Typically for cosmological covariance matrices the eigenvalues
that effectively carry information obey some power law, and as
we reach the lower eigenvalues the noise appears as an abrupt
change in the scaling of the eigenvalues (Vogeley & Szalay
1996). In figure 6 we show the ranked eigenvalues for covari-
ance matrices. We can see that the eigenvalues of the denoised
matrices are much closer to the target and best matrices, while
the original input matrices show clear signs of noise in the lower
end of the spectrum of eigenvalues, which become more impor-
tant as we decrease the sample size. The improvements consid-
ering RD are a factor of more than ∼ 10.

3.4. An analytical comparison for the ML

We can compare the resulting (denoised) matrices with a model
for the probability distribution function for covariance matrices,
and which describes how their fluctuations depend on the sizes
of the data vector and the sample size. This was done according
to the Wishart distribution Wishart (1928); Taylor, Joachimi &
Kitching (2013):

p(M̂|M, ν, η) =

(
ννη/2|M|−ν/2|M̂|γ/2

2νη/2Γη[ν/2]

)
exp

−νTr
(
M̂M−1

)
2

 , (4)

where M represents the statistical mean of the matrices, |M| is
its determinant, M̂ is the random variable, the sample covari-
ance matrix, γ = ν − η − 1, and Γη[ν/2] the multivariate Gamma
function. The parameters of this distribution are the size of the

Figure 7. MSE comparison between the best matrix with: ma-
trices estimated from the Wishart distribution, in black; the in-
put, in circles (for n ∈ [50, 100, 200]); and denoised matrices, in
squares (from n ∈ [50, 100, 200] ⇒ N = 1000). The colors cor-
responds to the number of matrices in the input and resulted de-
noised matrices. The gray region corresponds to 1σ deviation for
the mean values, in the case of the Wishart matrices. The dashed
lines has the intention to guide the reader to see to which num-
ber of spectra n the input matrices were taken to their Wishart
comparison.

data vector η, the number of degrees of freedom ν (the sample
size). Therefore, given an “ideal” covariance matrix M, this dis-
tribution allows us to generate random covariance matrices cor-
responding to different sample sizes.

We have used the Wishart as an estimator to obtain Wishart
matrices with different values for ν/n, analyzing the MSEs
among them and the best matrix and the MSE among the de-
noised matrices and this same best matrix to obtain the effective
sample size of the denoised matrices. In figure 7 we plot this
MSE (mean and variance). Since the mean MSE values for the
denoised matrices are significantly lower compared with the in-
put matrices, according to the Wishart distribution the denoiser
is effectively taking matrices with samples of n = [50, 100, 200]
spectra, and transforming them into covariance matrices with
much larger samples, for n ∈ [450, 700, 940] spectra, respec-
tively.

3.5. Recovering the cosmological parameters

Ultimately, we analyzed the ability of the denoised matrices to
recover the fiducial simulated parameters and we have compared
these estimation with the parameters coming from the original
matrices, to validate our results. The analysis is presented in fig-
ure 8. We have explored the parameter space using the Markov
Chain Monte Carlo (MCMC) approach, using the emcee library
(Foreman-Mackey et al. 2013), data points as a random power
spectrum vector, and the different cosmological covariance ma-
trices. We analyzed the the parameters: H0, Ωb, Ωc and the nui-
sance parameter bias b, for the matrices built with the maximum
number of spectra, target, denoised and input matrices. In all the
analyses we have used 20 walkers and chains of 5000 length
(except for the input matrices, for which we have used 6000).

Overall, the parameters were well constrained using the de-
noised matrices. It is interesting to see that the inference consid-
ering the input matrices have a “false” precision (the volumes
in the parameter space are smaller, when compared to all the
other matrices) and is very inaccurate, because the mean val-
ues estimated is highly shifted. Moreover the input matrix with
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Figure 8. Cosmological parameter estimation comparison for dif-
ferent covariance matrices: matrices built using all the spectra
available (with Nmax = 30, 000 spectra); targets (N = 1000
spectra); input (using n = 50 spectra); and the denoised ones
(n⇒ N).

n = 50 spectra presents fluctuations on their contours, which are
improved/removed in the denoised matrix estimation.

4. Discussion and Conclusions

This work presents an efficient approach for the estimation of
cosmological covariance matrices. The main idea behind our
method is that, starting from matrices built with only hundreds
of spectra, we are able to provide covariance matrices that are
as good as if they were built with thousands of spectra. We have
implemented this method using CNNs as a denoising algorithm,
that cleans the noise in the input matrices. Visual inspection (see
figures 3 and 4) already shows that the noise was removed, with-
out the introduction of any visible artifacts when compared with
the best matrices.

In order to check whether the resulting (denoised) covari-
ance matrices were more similar to the best ones, we performed
a series of tests. We started by computing the mean square error
(MSE) of equation (3), and verified that the denoiser is able to
reduce that indicator by a factor of ∼ 10 – see figure 5. We also
compared the ranked eigenvalues of the matrices, and showed
that after denoising the input matrices we recover the main fea-
tures of the target and even of the best matrices.

We have shown that the proposed method can be matched
in terms of an extrapolation according to the Wishart distribu-
tion (Taylor, Joachimi & Kitching 2013; Wishart 1928), by ef-
fectively augmenting the size of the sample that underlies the
covariance matrix. Finally, the strongest evidence for the power
of the denoising technique is provided by the parameter estima-
tion. All the parameters were well constrained in the case of the
denoised matrices. We saw improvements (when comparing the
input and denoised matrices) for all of them. In particular, the
improvements achieved for H0 using the sample with n = 50
spectra were of a factor of ∼ 17.9.

The next steps regarding this project are: (i) to test our ma-
chinery in matrices from different cosmologies than the fiducial
one, that was used in the training stage (to check if the method
can generalize in those situations); (ii) to apply the ML suite in

more complex and realistic covariance matrices (redshift space,
multiple tracers, and in higher-order statistics).
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