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Abstract. In this work, we explore the problem of chaotic diffusion in dynamical systems within two different frameworks: the action
and the frequency domains. Dynamical characterization of the phase space of the Planar, Circular, Restricted Three Body Problem
(PCR3BP) is made using traditional tools (Poincaré Sections, Lyapunov Exponents and Spectral Analysis). The results obtained
are compared to those obtained applying the Shannon Entropy method (SE), Mean Squared Displacement (MSD) of independent
frequencies and Laskar’s Equation of Diffusion. The diffusion/Instability times present both qualitative and quantitative agreement
with instability times obtained through direct integrations. We conclude that the study of instabilities in the frequency domain
provides reliable estimates of the diffusion timescales, and also presents a good cost-benefit in terms of computation-time.

Resumo. Neste trabalho, exploramos o problema da difusão caótica em sistemas dinâmicos por dois referenciais diferentes: o
espaço de ações e o espaço de frequências. O espaço de fase do Problema Planar, Circular e Restrito de Três Corpos (PCR3BP) é
feita com o uso de ferramentas tradicionais (Seções de Poincaré, Expoentes de Lyapunov e Análise Espectral) e comparada com
a obtida pelos Coeficientes de Difusão calculados por meio da Entropia de Shannon (SE), Deslocamento Quadrático Médio da
evolução de frequências independentes (MSD) e da Equação de Difusão de Laskar aplicada no espaço de frequências. Os tempos
de difusão/instabilidade calculados a partir desses coeficientes apresentam concordância qualitativa e quantitativa com os tempos
de instabilidade obtidos por integrações diretas, mas concluímos que o estudo de instabilidades no domínio da frequência fornece
estimativas confiáveis para escalas de tempo de difusão, além de apresentar um bom custo-benefício em termos de tempo de
computação e confiabilidade.
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1. Introduction

Chaotic diffusion in the action space is a commonly used ap-
proach to study stability of dynamical systems (Froeschlé et al.,
2005; Cachucho et al., 2010; Martí et al., 2016). However, the
analysis of the diffusion in the frequency domain shows some
advantages; indeed, Laskar (1990) showed that the existence of
a chaotic zone is much more visible in the frequency domain
than in the action domain. In addition, it is also independent on
the choice of coordinates.

Here, we investigate chaotic diffusion applying the different
tools within both domains, estimating chaotic diffusion coeffi-
cients and diffusion timescales within regions of the phase space
of the PCR3BP. Finally, we compare the calculated timescales
with instability times obtained through the calculation of the
Lyapunov times and direct integrations of equations of motion.

2. Methods and Procedures

We perform a dynamical characterizarion of the phase space of
the PCR3BP using several methods, such as the Poincaré Surface
of Section, the Fast Lyapunov Indicator (FLI, Froeschlé et al.,
2005) and the Method of the Spectral Number (SN, Michtchenko
& Ferraz-Mello, 2001).

Together with the traditional methods, we calculate diffu-
sion coefficients using the tools, which represent both frequency
and action domains: The Spectral Analysis (SA), the Wavelet
Analysis (WA) and the Shannon Entropy (SE) methods.

Finally, estimates of Diffusion Timescales defined by the dif-
fusion coefficients are compared to those obtained through direct
integrations and the calculation of the Lyapunov times.

3. Diffusion Coefficients and Instability Times

Concerning the behavior of the system in the frequency domain,
Laskar (1993) proposed that diffusive phenomena tend to follow
traditional Equation of Diffusion ∂xx f (x, t) ∝ ∂t f (x, t): the diffu-
sion in time can be related to the diffusion in space.

Cincotta & Simó (2000) stated that the diffusion coefficients
in the frequency space should follow Chirikov (1979) theory of
diffusion and can be obtained by means of the MSD. Here we
adopt the definition of the diffusion coefficients introduced by
Marzari et al. (2003) and introduce one based on the work of
Froeschlé (2005).

Working in the action domain, we use the definition given in
Beaugé & Cincotta (2019) and Alves et al. (2021), which esti-
mates the diffusion coefficients DS based on the time evolution
of the Shannon Entropy.

3.1. Diffusion in the Phase Space

In this work, 201 initial conditions were integrated over 10.000
orbital periods in the interval 0.05 ≤ x(0) ≤ 0.75, with fixed
ẋ(0) = 0, y(0) = 0 and ẏ(0) calculated for CJ = 3.03 and
µ = 0.0009537. For those 201 particles, the FLI, the SN and the
time evolution of the independent frequencies were calculated
applying the WAM. An ensemble of the 5 particles, close to the
initial condition, was also integrated over 1000 orbital periods,
in order to obtain the SE. For all particles from the ensemble, the
complete Spectral Analysis of the orbital motion was also done.

The main results obtained are shown in in Figure 1.
Several dynamical structures can be seem from the applica-

tion of two robust chaos indicators, FLI and SN, specially nearer
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Figure 1. Top left: Poincaré sections, Top right: Diffusion Coefficients
obtained using Laskar’s Equation of Diffusion, Middle right: Diffusion
coefficients obtained using the MSD, Bottom right: Diffusion
Coefficients obtained using the SE, Bottom left: Space evolution of the
FLI and the SN.

m1 (bottom-left panel), where mainly regular motions can be ob-
served on the Poincaré section.

The diffusion coefficients obtained using the Laskar’s rela-
tion (top-right panel) show the expected behaviour inside a re-
gion of confined chaos, despite a visible spread of the δt f (x, t)
solutions.

The coefficients based on the time evolution of frequencies
show similar behavior (middle-right panel). Nonetheless, the
Marzari’s method shows sensibility in the slow-diffusion regions
of the phase space, when compared to the Froeschlé method.

The SE allows us to clearly distinguish between regions of
the regular and chaotic motion, being more sensitive inside the
regions, where slow diffusion dominates (bottom-right panel).

3.2. Estimate of Instability Times

Using the values of the diffusion coefficients obtained above, we
can estimate the corresponding diffusion times (Froeschlé et al.,
2005; Robutel & Gabern, 2006; Alves et al., 2021). The values
obtained are shown in Figure 2 and compared to the results ob-
tained through the direct integrations (solid black and red lines
on the top-left panel).

In the region close to m1, the instability times obtained
through the numerical integrations do not corroborate the re-
sults provided by the Chaos indicators, once chaotic motion is
confined and slowly diffusing, as shown on the previous ses-
sion. Farther from m1, the Lyapunov times are related to the es-
cape/crossing times, following results obtained by Lecar et al.
(1992), specially in regions of strong chaotic motion.

The instability times obtained using the Laskar’s equation
of diffusion (top-right panel) mostly agree with the direct inte-
gration times and also show robustness in relation to the use of
either a single particle or ensembles (black and red/blue curves,
respectively), obtained by the SA or the WA (black/red and rlue
curves, respectively).

The coefficients obtained using the MSD (bottom-left panel)
show agreement with the direct integration times, Marzari’s co-
efficient more coincident than those given by the Froeschlé’s def-
inition.

The instability estimates obtained by the use of the SE
(bottom-right panel) agree with those obtained by the MSD
method, but show higher dispersion than the others in the re-
gions of the strong chaotic motion, mostly due to the choice of
the rescaling constant defined in Beaugé and Cincotta (2019) and
Alves et al. (2021).
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Figure 2. Instability times obtained by distinct methods. Top left: Direct
integrations (red curve for escape/collision times, black solid curve for
orbit-crossing times and black dashed for Lyapunov times). Top right:
Using Robutel & Gabern (2006) approach, using an ensemble of parti-
cles (solid black curve), one particle (dashed red curve) and mean fre-
quencies using WAM (dashed blue curve). Bottom left: Using Marzari’s
Method (τmarz) and Froeschlé’s (τMS D). Bottom right: Using coefficients
obtained by SE. Gray region show typical instability times obtained by
direct integrations.

4. Conclusions

The use of the different tools for the characterization of dynam-
ical systems ensures greater accuracy, however, the economy
of computational resources should be kept in mind during the
choice of a tool to be applied.

The study of chaotic diffusion in the frequency space is
shown to be of good cost-benefit, in terms of both accuracy and
computation times. On the contrary, in our case, the application
of the SE proved be computationally time-consuming.

Anyway, it seems that the results yielded by the use of dif-
ferent tools show a good agreement with the instability times
obtained through the numerical integrations.

Further studies must be done in order to verify robustness of
the methods, as well as the longer integration times and addi-
tional applications to the different dynamical systems; nonethe-
less, our results indicate the reliability of the tested tools for a
fast and reliable dynamical characterization of system.

Further development of the presented tools should also play
an important role, in order to increase their accuracy and cost-
benefits.
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