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Abstract. We present a methodology to identify stars, quasars and galaxies using data from the Southern Photometric Local Universe
Survey (S-PLUS) in the Stripe-82 region. We compared the performance of two supervised learning algorithms: Support Vector
Machine (SVM) and Random Forest (RF) in terms of precision, recall and F-measure. Tests were performed on a sample of 3421
quasars, 13228 stars and 21 181 galaxies, that were spectroscopically confirmed by SDSS. Statistical tests demonstrate that RF
applied on 12 S-PLUS filters + 2 WISE bands (W1, W2) + Morphology parameters provided the best performance, due to inclusion
of near-infrared information. We also consideredanything important to mention a second classifier trained only on 12 S-PLUS filters
+ Morphology parameters, as not all sources in the S-PLUS fields will have a WISE counterpart. In terms of quasar classification, we
achieved 95.49% (92.83%) for precision and 95.26% (91.23%) for recall when considering a model with WISE (without WISE). For
photometric redshift estimation, we obtained a precision of 6%, considering the feature space of 12 S-PLUS bands + 2 WISE bands
in colors in a k-Nearest Neighbour algorithm. We conclude that the combination of S-PLUS and WISE filters is a powerful tool to
search and determine photo-zs of new quasars.

Resumo. Neste trabalho apresentamos uma metodologia para identificar estrelas, quasares e galdxias usando dados do Southern
Photometric Local Universe (S-PLUS) na regido do Stripe-82. Comparamos a performance de dois algoritmos de classificag@o
supervisionada: Support Vector Machine (SVM) e Random Forest (RF) em termos de precisdo, recall e F-measure. Testes foram
realizados em uma amostra de 3 421 quasares, 13228 estrelas e 21 181 galdxias que foram confirmadas espectroscopicamente
pelo SDSS. Testes estatisticos demonstraram que a melhor performance proveio do algoritmo RF aplicado no espaco de 12 filtros
do S-PLUS + 2 bandas do WISE (W1, W2) + pardmetros morfolégicos, dado a inclusido do infravermelho préximo. Também
consideramos um segundo classificador treinado apenas no espaco de 12 filtros do S-PLUS + parametros morfolégicos, devido a
possibilidade de um objeto ndo ter sido observado pelo WISE. Em termos de classificacdo de quasares, obtivemos uma precisio
de 95.49% (92.83%) e um recall de 95.26% (91.23%) quando considerado um modelo treinado com dados do WISE (sem WISE).
Para o problema de regressdo referente a estimacio de photo-zs, a melhor precisdo obtida foi de 6%, considerando as 12 bandas
do S-PLUS e as 2 bandas do WISE em cores, utilizando k-Nearest Neighbours. Concluimos que a combinacio de cores obtidas
das bandas do S-PLUS e do WISE nos proporciona uma ferramenta poderosa para busca de quasares e determinacio de seus photo-zs.
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1. Introduction

In this century, many telescopes have been or are being built
to survey large areas on the sky, collecting data for an order of
millions, and even billions of objects. For instance, GAIA DR2
(Gaia Collaboration et al., 2018) contains measurements of 1.7
billion sources; The Large Synoptic Survey Telescope (LSST;
Ivezi¢ et al., 2019) aims to provide 32 trillion observations of
40 billions objects. Object classification is a major issue for all
these new surveys.

Generally, galaxies and stars can be easily separated due to
their different morphologies (e.g. Moore et al., 2006, Pimbblet
et al., 2001), while quasars can be confused with stars, given
that both are unresolved sources. In the low signal-to-noise
regime, however, galaxies and stars can also be difficult to sep-
arate. Object classification is best done when spectroscopy of
the source is available, especially for emission-line galaxies,
for which the classification is actually based on line widths
(Baldwin et al., 1981,Lamareille, 2010, Kewley et al., 2006).

However, spectroscopic surveys take so much longer for data
collection than photometric surveys, many techniques have been
developed to perform star/quasar separation on photometric
surveys, such as: colour-colour cuts (e.g. Paris et al., 2018,
Schindler et al., 2017, Wu et al., 2012, Wu et al., 2010); proper
motion criteria (e.g. Heintz et al., 2018, Guo et al., 2018);
Bayesian Statistics (e.g. Yang et al., 2017, Peters et al., 2015,
Kirkpatrick et al., 2011), and Machine Learning algorithms (e.g.
Jin et al., 2019, Peng et al., 2012, Carrasco et al., 2015 ).
Few works have tackled both problems at once in a 3-class
(star/quasar/galaxy) separation (e.g. Kurcz et al., 2016, Yang et
al., 2017, Clarke et al., 2019 — submitted). Brescia et al., 2015
have shown, using SDSS magnitudes, that a 3-class separation
improved accuracy in comparison with a 2-step approach con-
sisted of a galaxy/star and a star/qso classifications.

Object classification is highly facilitated if there are images
available in a number of different filters, covering the whole
spectral energy distribution, mimicking a low-resolution spec-
trum. In this sense, it is well known that combining optical
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with infrared information (e.g. from WISE, Wright et al., 2010)
greatly improves object classification (Wu et al., 2012, Schindler
et al., 2017, Bovy et al., 2012). In addition, the narrow-bands
surveys such as Javalambre-Physics of the Accelerated Universe
Astrophysical Survey (J-PAS; Benitez et al., 2014), Javalambre
Photometric Local Universe Survey (J-PLUS; Cenarro et al.,
2019) and Southern Photometric Local Universe Survey (S-
PLUS; Mendes de Oliveira et al., 2019) can be very useful to
separate stars, quasars and galaxies, alone or combined with
WISE data. In this work we use the data from S-PLUS, which
covers 9300 deg? with the Javalambre optical filter system con-
sisting of 7 narrow bands and 5 SDSS-like bands. We base
our analysis on supervised learning algorithms to classify stars,
quasars and galaxies in the S-PLUS fields of the first data release
DRI, in the Stripe-82 area.

2. Database
2.1. Quasar selection

Among many wide-field spectroscopic surveys, the Sloan
Digital Sky Survey (SDSS; York et al., 2000) has provided
the largest amount of discovered quasars (hereafter QSOs).
Recently, the quasar catalog from DR14 (DR14Q; Paris et al.,
2018) was released with 526 356 quasars over 9376 deg®. From
the DR14, 16 261 quasars with 15 < r < 21 fall over the Stripe-
82 area. A cross-match between S-PLUS DR1 and DR14Q
within 1 arcsec retrieves 14 054 (86.4% out of 16261). If we re-
strict the sample only to the objects that have W1 and W2 valid
data for magnitude, error and S/N, this number drops to 11422
(70.2% out of 16261) quasars (cross-matching was done using
the AIIWISE Source Catalogue within 2 arcsec). In this work
we use a sample of quasars with no restriction in magnitudes, to
enable assessment of the classification performance at the bright
and faint end.

The final sample used had 13683 quasars with WISE coun-
terpart and with any magnitude. The WISE magnitude informa-
tion was taken directly from DR14Q and objects with null infor-
mation on either magnitude, error or signal-to-noise, for the W1
and W2 bands, were excluded.

2.2. Star and galaxy selection

We selected all spectroscopically confirmed stars and galaxies
down to a magnitude rspss = 22 in Stripe-82 through a query in
CasJobs', retrieving the spectroscopic and photometric informa-
tion from the SDSS DR15. We cross-matched these catalogues
of stars and galaxies with the AIIWISE catalogue, within 2 arc-
sec, and then we cross-matched the resulting catalogue with the
S-PLUS DRI, within 1 arcsec. Our final samples have 52914
stars and 84 723 galaxies. Note that these only include objects
that have WISE counterparts. If we only consider objects in the
magnitude range 15 < r < 21, they respectively represent 53.7%
and 56% out of 96 894 stars and 147 289 galaxies from SDSS.

3. Methodology
3.1. Classification of stars, quasars and galaxies

We tested two different supervised learning algorithms for clas-
sification: Support Vector Machine (SVM) and Random Forest
(RF). We implemented both algorithms from the scikit-learn
(sklearn) library (Pedregosa et al., 2011) in PyTHON.

! http://skyserver.sdss.org/CasJobs/

Several works have used the five SDSS broad-bands for ei-
ther star/quasar or star/quasar/galaxy separation (e.g. Brescia et
al., 2015, Peters et al., 2015). We want to evaluate the advantage
of the 7 S-PLUS narrow-bands against using only the 5 broad-
bands. Thus, we tested the following feature spaces:

(i) 12 S-PLUS bands
(i) 12 S-PLUS bands + 2 WISE bands
(iii) 5 S-PLUS broad-bands
(iv) 5 S-PLUS broad-bands + 2 WISE bands

As we are considering fixed hyper-parameters for SVM and
RF, we ended up with 8 unique experiments (4 feature spaces x 2
algorithms). For further references, we will call each experiment
from its roman numeral (from the above list of feature spaces)
followed by the letter a, for SVM, and b, for RF.

To evaluate the models, we consider metrics based on the
confusion matrix. Considering i, j € Y, we can define precision
(P) and recall (R) as follows:
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In Astronomy, precision is also known as purity and recall
is also known as completeness or efficiency. We can also define
another metric that evaluates R and P in a single value, which is
the harmonic mean of P; and R; called as F-measure (F,):

PR
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Note that P;, R; and F; € [0,1]. For the goal of this project,
we expect P;, R; and, consequently, F; to be ~ 1. For an over-
all evaluation of the model’s performance (i.e. considering the
classification of quasars, stars and galaxies altogether), we use
the macro-averaged F-measure (F), defined as the mean of the

F-measure values.

3.2. Photo-z determination for quasars candidates

We estimate one photo-z by measuring the median of
the spectroscopic redshifts of the n-th closest spectro-
scopically confirmed quasars from the corresponding
quasar candidate. This method is also called as k-Nearest
Neighbours (kNN). We wuse the implementation from
sklearn.neighbors.NearestNeighbors with all pa-
rameters set as default.

We divided our quasar sample into 70% as training set and
30% as testing set, using sklearn.train_test_split with
random_state = 42. We end up with 9 639 quasars in training
set and 4 132 quasars in testing set.

We compare the performance of kNn on the same features
spaces (i) to (iv) described in §3.1 along with 4 more feature
spaces:

(v) 12 S-PLUS bands in colors: uJAVA — g, JO378 — g, J0395
—-g,J0410 — g, J0430 — g, g magnitude , g — JO515, g — 1,
g —J0660,g—1,j—JO861, g
(vi) 12 S-PLUS bands + 2 WISE bands in colors: as (vi) with
additional g — W1 and g — W2
(vii) 5 S-PLUS broad-bands in colors:u —g, g —r,r —i,i—z
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Table 1. Classification results using SVM and RF without restrictions (e.g. signal-to-noise, missing values, limiting magnitudes,
etc.). The letters Q, S and G stand for quasar, star and galaxy, respectively.

Features Algorithm and Training time (s)  Class Precision Recall F-measure
Q 0.7847 + 0.0054  0.927 + 0.0023 0.85 = 0.0031
(b) SVM S 0.9119 £ 0.0041  0.8952 +£0.0043  0.9034 + 0.0015

(i) 12 S-PLUS bands:
uJAVA, J0378, J0395, J0410, J0430,
JO515, J0660, J0861, g, r,iand z

263.6193 + 17.1576

G 0.9275 £ 0.0021  0.9109 +0.0029  0.9191 + 0.0007
Macro-averaged F-measure: 0.8908 + 0.0013

Q 0.909 + 0.0057  0.8749 + 0.0037 0.8916 + 0.0034
(b) RF S 0.9587 £ 0.0022  0.9005 = 0.0052  0.9287 + 0.002
19.5892 + 1.3423 G 0.9243 + 0.0027  0.9649 = 0.0014  0.9441 + 0.0009
Macro-averaged F-measure: 0.9215 + 0.0014
Q 0.9052 + 0.0019  0.955 + 0.0028  0.9294 + 0.0022
(b) SVM S 0.9588 + 0.0017  0.9525 +0.0032  0.9556 + 0.0017
.. 199.7843 + 18.3514 G 0.965 £ 0.0019  0.9603 + 0.0011  0.9626 + 0.001
(IIJJIA%;_I?(;%SSI);S?; 5+ _?OX{)SI_?OT;OdS. Macro-averaged F-measure: 0.9492 + 0.0011
10515, 10660, 0861, g, 1, 1, z, W1 and W2 Q 09510004 09367 +0.0046 0.9438 + 0.0026
(b) RF S 0.9698 + 0.0013  0.9659 £ 0.002  0.9678 + 0.0011
19.3189 + 0.0919 G 0.9701 £ 0.0013  0.9749 £ 0.001  0.9725 + 0.0007
Macro-averaged F-measure: 0.9614 + 0.0011
Q 0.753 + 0.008 0.9378 £ 0.0023  0.8353 + 0.0051
(b) SVM S 0.8985 + 0.0031  0.8927 £ 0.003  0.8956 + 0.0019
136.9018 + 13.5146 G 0.9259 + 0.0017  0.8928 £ 0.0027  0.9091 + 0.0015
(iii) 5 S-PLUS broad-bands: Macro-averaged F-measure: 0.88 + 0.0024
wAVA, g, 1,1, Z
Q 0.8936 + 0.0052  0.8578 £ 0.0054  0.8753 + 0.0039
(b) RF S 0.9256 + 0.0024  0.8836 = 0.0046  0.9041 + 0.0022
11.7195 £ 0.1905 G 09111 £0.0026  0.9428 £ 0.0015  0.9267 + 0.0009
Macro-averaged F-measure: 0.902 + 0.0013
Q 0.8987 + 0.0064 0.9773 £ 0.0034  0.9363 + 0.0045
(b) SVM S 0.9616 + 0.0015  0.9694 + 0.0022  0.9655 + 0.0013
55.9284 + 5.2862 G 0.979 + 0.0015 0.9601 £ 0.001  0.9695 + 0.0011
(iv) 5 S-PLUS broad-bands + 2 WISE bands: Macro-averaged F-measure: 0.9571 + 0.0021
uwJAVA, g, 1,1, z, W1 and W2
Q 0.9488 + 0.0038  0.9411 £ 0.0029  0.945 +0.0014
(b) RF S 0.9641 £ 0.0015 0.9641 +£0.0022  0.9641 + 0.0012
14.2676 + 1.0016 G 0.9695 + 0.0015 0.9708 = 0.0008  0.9702 + 0.0007

Macro-averaged F-measure: 0.9597 + 0.001

(viii) 5 S-PLUS broad-brands + 2 WISE bands in colors: as (v)
with additional g — W1 and g — W2

In order to assess the performance of this method, we calcu-
late the NMAD defined in Equation 4:

“4)

o, = 1.48 X median(—'dz — median(92) ]

1+ 2z

with 0z = Z— z;, where z, denotes the spectroscopic redshift, and
Z is the photometric redshift.

4. Results
4.1. Classification of stars, quasars and galaxies

Results for each model experiment are shown in Tab. 1. We com-
pared their performances through unpaired two-sample t-tests,
which are not shown in this proceeding. Firstly, we evaluated
that the RF significantly improves the classification, compared
to SVM. We can see that, generally, RF requires less than 10%
of the SVM’s computational time. Thus, we will only consider
results from RF for the further tests.

One aim of this work is to assess if the narrow-bands im-
prove the classification. Then we compared i-b with iii-b, i.e.
when WISE magnitudes are not being considered, and ii-b with
iv-b, when considering WISE magnitudes. With addition of
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WISE, the narrow-bands do not significantly increase (or de-
crease) the performance of quasar classification. This is possi-
bly due to the fact that WISE plays a more important role on
distinguishing objects. However, star precision and galaxy re-
call have been significantly improved. On the other hand, the
S-PLUS narrow-bands significantly increase the precision and
recall of all classes when training RF without WISE magnitudes,
showing that a good star/quasar/galaxy classification is achieved
also with the 12 bands only. This is important to note, given that
we do not have WISE detection for all sources. Nevertheless, we
evaluated the inclusion of W1 and W2 by comparing i-b with ii-
b and iii-b with iv-b, confirming the importance of WISE mag-
nitudes for the classification. The best feature spaces with and
without WISE in a RF algorithm are 12 S-PLUS bands (i) and
12 S-PLUS bands + 2 WISE bands (ii), respectively.

Costa-Duarte et al., 2019 (submitted) concluded that using
a RF algorithm with a combination of the 12 S-PLUS filters
plus information on object morphology increases the accuracy
of the star/galaxy classification. Thus, we also included mor-
phology information in our training in an attempt to improve the
performances. The parameters FWHM, A, B and KrRadDet were
included within the experiment i-b and ii-b and we will further
refer to them as i-b* and ii-b*. The results including morphology
statistically improved the star/galaxy classification for both ex-
periments, as already expected (Tables 3 and 2). Moreover, the
precision and recall for all classes significantly increased, for the
case when WISE information is used, as compared to no WISE
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Ficure 1. Cumulative percentages of misclassified and not recovered stars (blue), quasars (pink) and galaxies (orange). The models
referring to 12 S-PLUS bands + 2 WISE bands + Morphology features (ii-b*) and 12 S-PLUS bands + Morphology (i-b*) features
in a Random Forest algorithm are represented by a solid and dashed curves, respectively. (a) Cumulative percentage of misclassified
objects per magnitude. The fraction’s denominators are the total of predictions in each class, therefore it may vary from classifier
to classifier. For ii-b* (i-b*), we are calculating the fractions from a total of 13 111 (13 121) star, 3406 (3 353) quasar and 21 313
(21 356) galaxy classifications. (b) Cumulative percentage of not recovered objects per magnitude from a total of 13228 known

stars, 3421 known quasars and 21 181 known galaxies.

Table 2. Cross-validation results for the experiment i-b* with
morphology inclusion, i.e. considering the feature space con-
sisted of 12 S-PLUS bands + Morphology within a Random
Forest algorithm with 100 estimators and bootstrap.

Class Precision (P) Recall (R) F-measure (F)
QSO 0.9286 + 0.0044  0.9135 +£0.0051 0.9210 £ 0.0038
STAR 0.9803 +£0.0016  0.9716 £ 0.0022  0.9759 + 0.001

GALAXY 09773 £0.0007 0.9853 +£0.0008 0.9813 + 0.0003

Macro-averaged F-measure (F): 0.9594 + 0.0011
Fit time: 23.8817 + 0.4656s

Table 3. Cross-validation results for the experiment ii-b* with
morphology inclusion, i.e. considering the feature space con-
sisted of 12 S-PLUS bands + 2 WISE bands + Morphology
within a Random Forest algorithm with 100 estimators and boot-
strap.

Class Precision (P) Recall (R) F-measure (F)
QSO 0.9522 £ 0.0058 0.9516 +£ 0.0024  0.9519 + 0.0024
STAR 0.9886 + 0.0016  0.9789 + 0.0023  0.9837 + 0.0008

GALAXY 0.9820 +0.0013 0.9881 + 0.0007  0.9850 + 0.0006

Macro-averaged F-measure (F): 0.9735 + 0.0011
Fit time: 26.614 + 1.1522s

information, except for the QSO precision (the latter case does
not show a significant statistical difference).

After this step of model validation, we calculated the ex-
pected precision and recall for the two different classifiers using
the testing set. The final model performances can be checked
in Fig.1. Fig. 1(a) shows the cumulative percentage of mis-
takes (i.e. 1 — P;) in the classification per model, per class and
per magnitude in r. The cumulative misclassification rates of
quasars, stars and galaxies ares 0.35% (0.50%), 0.77% (1.23%)
and 0.55% (0.65%) for ii-b* (i-b*) at magnitude r = 19, respec-
tively. Furthermore, the star/QSO/galaxy separation is still rea-
sonable good up to magnitude r = 22, specially for galaxies and

stars, for which misclassification rates remain slightly constant.
On other hand, a steep increase in our quasar classification errors
can be seen for both models, but specially for model i-b*. In Fig
1(b) we show the cumulative percentage of not recovered objects
(i.e. 1 — R;) per model, per class and per magnitude in r. We can
see that a lot more quasars are not being recovered with model i-
b* in comparison to model ii-b* even at lower magnitudes. Up to
magnitude r = 19, the rates are 0.93% (2.40%), 0.72% (0.94%)
and 0.49% (0.53%) for quasars, stars and galaxies, respectively.
At fainter magnitudes the rates of not recovered stars and galax-
ies remain fairly good.

4.2. Photo-z determination for quasars candidates

The best precision achieved is o, = 6.56% considering k = 5
when training k-NN within the feature space 12 S-PLUS bands
+ 2 WISE bands in colors. In overall, this feature space provided
a better performance in comparison with others (Fig. 2). The
exception occurs in the bright and faint end of magnitude, which
is mainly due to a lack of observed quasars atr < 17 and r > 21.
Thus, this precision can only be improved if we can increase the
number of observed data at these ranges of magnitude. We reach
a precision of 6.33% when only considering objects in the range
17 < r< 18, 3.54% for 18 < r < 19 and 3.66% for 19 < r < 20.
In terms of spectroscopic redshift, we achieved the lowest o, of
2.449% for objects within 2 < z < 3. For objects within0 <z < 1,
1 <z <2 and z > 3 we achieved, respectively: 7.26%, 8.51%
and 5.22%.

5. Conclusions

After several tests, we selected two models for classifying stars,
quasars and galaxies in the S-PLUS fields:

— Classifier i-b*: 12 S-PLUS bands + Morphology parameters
within a Random Forest algorithm with 100 estimators and
bootstrap

— Classifier ii-b*: 12 S-PLUS bands + 2 WISE bands +
Morphology parameters within a Random Forest algorithm
with 100 estimators and bootstrap
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Ficure 2. Relation between o, and: (a) number of neighbours, where the markers represent the best precision found, (b) magnitude
in r and (c) spectroscopic redshift. Each color correspond to a different feature space: 12 S-PLUS bands (red), 12 S-PLUS bands in
colors (yellow), 5 S-PLUS broad-bands (pink) and 5 S-PLUS broad-bands in colors (blue). The dashed lines represent the feature

spaces that includes W1 and W2 from WISE.

Considering ii-b* (i-b*), we achieved a macro-averaged F-
measure of 97.44% (95.95%). In terms of quasar classification,
we achieved 95.49% (92.83%) for precision, i.e., 121 (149)
galaxies and 34 (93) stars were wrongly classified as quasars.
Meanwhile, we achieved 95.26% (91.23%) for recall, i.e., 142
(194) quasars were classified as galaxies and 21 (107) quasars
was classified as star. In terms of star classification, we got
a precision of 98.82% (97.98%) and recall of 98% (97.26%).
Finally for galaxies, a precision of 98.26% (97.83%) and a recall
of 98.8% (98.56%) were obtained. Specifically, 230 (269) stars
were classified as galaxies and 134 (158) galaxies were classi-
fied as stars. We concluded that the narrow-bands improve the
star/quasar/galaxy classification, especially when no WISE in-
formation is available. In terms of estimating photometric red-
shifts of our quasars candidates, we achieved the best perfor-
mance (o, = 6.56%) for kNN when considering the 12 S-PLUS
bands + 2 WISE bands in colors.

References

Baldwin, J. A. et al. (1981). PASP 93, pp. 5-19.

Benitez, N. et al. (2014). arXiv e-prints, arXiv:1403.5237, arXiv:1403.5237.

Bovy, Jo et al. (2012). The Astrophysical Journal 749.1, p. 41.

Brescia, M. et al. (2015). Monthly Notices of the Royal Astronomical Society
450.4, pp. 3893-3903.

Carrasco, D. et al. (2015). Astronomy Astrophysics 584, A44.

Cenarro, A.J. etal. (2019). AGA 622, A176, A176.

Clarke, A. O. et al. (2019).

Costa-Duarte, M. V. et al. (2019).

Gaia Collaboration et al. (2018). AGA 616, Al, Al.

Guo, Sufen et al. (2018). Astronomy Astrophysics 618, A144.

Heintz, K. E. et al. (2018). A&A 615, L8, p. LS.

Ivezi¢, Zeljko et al. (2019). The Astrophysical Journal 873.2, p. 111.

Jin, Xin et al. (2019). MNRAS 485.4, pp. 4539-4549.

Kewley, L. J. et al. (2006). MNRAS 372, pp. 961-976.

Kirkpatrick, Jessica A. et al. (2011). The Astrophysical Journal 743.2, p. 125.

Kurcz, A. et al. (2016). Astronomy Astrophysics 592, A25.

Lamareille, F. (2010). A&A 509, A53, A53.

Mendes de Oliveira, C. et al. (2019). MNRAS 489.1, pp. 241-267.

Moore, Jason A. et al. (2006). Publications of the Astronomical Society of
Australia 23.04, pp. 135-146.

Paris, . et al. (2018). AGA 613.A51.

Pedregosa, F. et al. (2011). Journal of Machine Learning Research 12, pp. 2825—
2830.

Peng, Nanbo et al. (2012). MNRAS 425.4, pp. 2599-2609.

Peters, C. M. et al. (2015). ApJ 811, 95, p. 95.

Pimbblet, K. A. et al. (2001). Monthly Notices of the Royal Astronomical Society
327.2, 588-600.

Schindler, Jan-Torge et al. (2017). ApJ 851, 13, p. 13.

90

Wright, Edward L. et al. (2010). AJ 140.6, pp. 1868-1881.

Wau, Xue-Bing et al. (2010). Monthly Notices of the Royal Astronomical Society,
no—-no.

Wu, Xue-Bing et al. (2012). AJ 144, 49, p. 49.

Yang, Qian et al. (2017). AJ 154, 269, p. 269.

Yang, Qian et al. (2017). The Astronomical Journal 154.6, p. 269.

York, D. G. et al. (2000). AJ 120, pp. 1579-1587.



	Introduction
	Database
	Quasar selection
	Star and galaxy selection

	Methodology
	Classification of stars, quasars and galaxies
	Photo-z determination for quasars candidates

	Results
	Classification of stars, quasars and galaxies
	Photo-z determination for quasars candidates

	Conclusions

