Photometric redshifts for S-PLUS using machine learning techniques

E. Vinicius-Lima, L. Sodré Jr., & the S-PLUS collaboration.

Abstract. The distance to celestial objects is a fundamental quantity for studies in astronomy and cosmology. Until recently, the only way to obtain this information was via spectroscopy, but the increasingly bigger surveys, with enormous amounts of data, made this approach infeasible. Therefore a new way to estimate the distance to objects, based on photometry, was developed. Photometric redshifts can be acquired for many objects in a time-inexpensive manner. In this work, the objective is to investigate how machine learning methods perform when using the 12 filter system of S-PLUS. Also, a comparison with the currently used method for this purpose (BPZ) is done. The results show that S-PLUS has potential to acquire accurate photometric redshifts using machine learning techniques.

Methods

Three different ML methods were used in this work, but each one is based on a different approach. They are compared to the TF code BPZ.

ANNz2: Artificial Neural Networks for photometric redshifts (2.0) is based on shallow neural networks and boosted decision/regression trees (BDTs). Only BDTs were used in this research and they work by making splits of a training dataset, in order to narrow down the target variable (i.e redshift).

GPz: Gaussian Processes (GPs) for photometric redshifts is a method that uses sparse GPs which describe the training dataset using a limited number of basis functions. This way the regression target can be generated by a linear combination of non-linear functions plus a noise term.

Keras: Keras is a Python API (application programming interface) that provides ease of access to low-level machine learning languages such as TensorFlow, Theano or CNTK. This method is more commonly applied to deep-learning problems.

BPZ: Bayesian Photometric Redshifts is a template fitting code, which is based on a comparison between an objects’ spectral energy distribution and a library of model spectra. Then, using some sort of optimization metric, such as a minimization, it is possible to determine the best photometric redshift of the object.

3. Datasets

The S-PLUS Data-Release 1 catalogue (Mendes de Oliveira et al. 2019) contains photometry on the twelve bands using three different apertures. The ° AUTO magnitudes are total restricted magnitudes, containing most the the light from the galaxy while retaining a high signal-to-noise. For this reason, they are ideal for photometric redshift determinations (Molino et al. 2017).

The S-PLUS photometric redshifts (Molino et al. 2019) are obtained using the second version of the template-fitting algorithm BPZ (Benítez 2000), which is not publicly available. This code is capable of using a luminosity-based prior to weight the likelihood-function obtained from the comparison of data and templates, and also uses optimized SED models for redshift determination for the local universe.

The SDSS - Data Release 15 (Aguado et al. 2019) is the latest data release of the project, and includes all previous releases. The main addition to the SDSS data in this release comes from the MaNGA survey (Bundy et al. 2015), designed to obtain spectra for nearby galaxies using integral field units. DR15 also had an update regarding the flux calibration schemes (details can be found on the project website). The spectroscopic redshifts and classifications used in this work are obtained using the “spec1d” pipeline (Bolton et al. 2012).

The WISE survey (Wright et al. 2010) is a project whose main mission was executed between 2009 and 2011, and which...
Table 1. Metrics, denotations and definitions that are used to analyse the results of this work.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Denoted by</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta</td>
<td>δz</td>
<td>$z_{\text{phot}} - z_{\text{spec}}$</td>
</tr>
<tr>
<td>Scatter</td>
<td>σ_{NMAD}</td>
<td>$1.48 \times \text{median}\left(\frac{</td>
</tr>
<tr>
<td>Bias</td>
<td>μ</td>
<td>$\frac{\delta z}{1 + z_{\text{spec}}} > 0.15$</td>
</tr>
<tr>
<td>Outlier Fraction</td>
<td>η</td>
<td>$\frac{</td>
</tr>
</tbody>
</table>

5. Conclusions

Surveys with narrow-band filters, such as S-PLUS, J-PLUS and J-PAS provide an excellent opportunity to acquire accurate results using machine learning methods. Also, comparatively, the methods presented in this work provided better results than those obtained with the template-fitting based BPZ for the same testing sample.

Acknowledgements. The author acknowledges the financial support provided by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) during this research.

References

4. Results

It is important to define the metrics that will be used to evaluate the models. The metrics chosen are the same presented in Molino et al. (2019). In order to provide a fair comparison between the ML methods and BPZ, the following metrics were adopted:

As can be seen in Figure 1, the machine learning methods had a better overall performance than BPZ in both magnitude and redshift bins. Specially when the bias and fraction of outliers is analyzed. Also, the results obtained with the deep-learning code Keras were the most accurate (lowest σ_{NMAD}), with a difference as high as 1% for fainter objects.