Formation and destruction of organic molecules in the upper atmosphere of Titan

Aline Ramos Novais, Diana P. P. Andrade & Heloisa M. Boechat-Roberty

1 Observatório do Valongo, Universidade Federal do Rio de Janeiro e-mail: aline12@astro.ufrj.br

Abstract. In this work we introduce an atmospheric code to simulate molecular abundances in Titan’s upper atmosphere, including mass loss. The retrieved abundances verify the possible formation of complex organic compounds, such as \(\text{HC}_3\text{N}, \text{CH}_3\text{CN}, \) and \(\text{C}_2\text{H}_5\text{CN} \), in a Titan-like environment, allowing the production of even bigger molecules. Ion fragments are also observed in our abundances, since the model takes into account a Saturn’s magnetospheric particle inflow. We present the main differences between considering Titan’s atmosphere with and without this inflow, and the roles these magnetospheric particles play in the fragmentation of atmospheric molecules.

Resumo. Neste trabalho introduzimos um modelo atmosférico para simular abundâncias moleculares na alta atmosfera de Titã, incluindo sua perda de massa. As abundâncias encontradas mostram a possível formação de compostos orgânicos complexos em um ambiente similar a Titã, como \(\text{HC}_3\text{N}, \text{CH}_3\text{CN} \) e \(\text{C}_2\text{H}_5\text{CN} \), permitindo a produção de moléculas ainda maiores. Fragmentos iônicos também são observados, já que o modelo leva em conta a influência de partículas da magnetosfera de Saturno adentrando a atmosfera. Apresentamos as principais diferenças entre considerar a atmosfera de Titã com e sem a influência dessas partículas, e o papel que elas têm na fragmentação de compostos amosféricos.

Keywords. Planets and satellites: atmospheres – Astrochemistry – Astrobiology

1. Introduction

Perhaps one of the most interesting objects in the Solar System, Titan is known to be the only body besides the Earth to form and destroy complex organic molecules in its atmosphere. With a composition of about 95% \(\text{N}_2 \) (molecular nitrogen) and 3% \(\text{CH}_4 \) (methane), Titan’s atmosphere is irradiated by the UV sunlight, dissociating or ionizing its main molecules into smaller fragments, allowing the production of bigger ones. This process occurs in the upper parts of the atmosphere.

As these compounds become bigger, they condense to lower altitudes, forming clouds and hazes, and continue to accrete material. Eventually, an aerosol layer is formed in the stratosphere, at about 100–300 km. Titan’s upper atmosphere is also influenced by Saturn’s magnetosphere, and mass loss processes are observed. Particles such as ions and electrons from Saturn’s magnetosphere interact with compounds in Titan’s outer atmosphere, and outflows ions (HCNH\(^+\), C\(_2\)H\(_2\)\(^+\)) can be seen, along with an inflow of O\(^+\) from Enceladus.

Our work simulates the abundance of molecules in Titan’s upper atmosphere considering these escape processes, which occur at about 1400 km and above. We used a chemical model by Pinotti & Boechat-Roberty (2016), regarding a few corrections to utilize the model for a planetary atmosphere.

2. Methodology

2.1. Selection of species

We first selected to include in our model chemical compounds that were previously observed in Titan’s atmosphere, as well as its fragments. Only C, H, O and N-bearing molecules were considered.

2.2. List of reactions

The UMIST Database (McElroy et al., 2013) was the source for the reactions’ constants, and a correction had to be made to consider an atmospheric medium instead of an interstellar one. We also applied a correction factor to consider not only UV radiation from the Sun, but also plasma particles from Saturn’s magnetosphere, which are known to be the second main source of energy to inflow Titan’s atmosphere.

2.3. Continuity equations

Each molecule \(i \) has its own continuity equation (equation 1), which includes the flux variation according to the altitude \((d\Phi_i/dz) \), the production rate \((P_i) \) of all the reactions involving the specie \(i \), and the loss rate \((L_i) \). Initial parameters include the...
abundances of the three main molecules: N₂, CH₄, and H₂, from De La Haye et al., (2008), featured in Fig. 1.

\[-\frac{d(\Phi_i)}{dz} + P_i - L_i = 0 \Rightarrow -\frac{d(x_i n_{N_i} V_i)}{dz} + P_i - L_i = 0 \quad (1)\]

3. Results

We solve the continuity equation above 1450 km (exobase) for each molecule in the model, obtaining their abundances \((x_i\) in equation 1). Significant species were found to have high abundances. Ethylene (C₂H₄), acetylene (C₂H₂), and ethane (C₂H₆) are the three most abundant hydrocarbon products above the exobase, which agrees with Cassini-Huygens observations along the middle and lower atmosphere.

A high abundance of HCN, N, and an increasing CN abundance are derived by our results, meaning the production of cyanide triple-bonds, which will later form complex nitriles, such as acetonitrile (CH₃CN), cyanoacetylene (HC₃N), and propionitrile (C₂H₃CN), all featured on 3. Hydrogen cyanide’s protonated form, HCNH⁺, and its isomer, HNCH⁺, are the highest abundances along the ions 4, participating in the formation of complex molecules as well.

We were also able to observe the magnetospheric inuence in the abundances of small molecules and ions. Complex molecules were not affected by magnetospheric particles.

4. Conclusions

Our model estimates the abundance of prebiotic precursors, which could form molecules such as glycine and adenine. The former can be produced by reacting water, formaldehyde, and hydrogen cyanide.

\[\text{HCN} + \text{H₂CO} + \text{H₂O} \rightarrow \text{C₂H₃NO₂}\]

The latter is formed in the synthesis of 5 hydrogen cyanide molecules.

\[5 \text{HCN} \rightarrow \text{C₂H₅N₃}\]

The production of both prebiotic compounds in Titan was previously studied in laboratory experiments by Wayne (2018) and Pilling et al., (2009), respectively.

References